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ABSTRACT

Likelihood ratio statistics for (i) testing the homoge-
neity of a collection of multinomial parameters against the
alternative which accounts for the restriction that those para-
meters are starshaped (cf. Shaked, Ann. Statist. (1979)), and
for (ii) testing the null hypothesis that this parameter vector
is starshaped, are considered. For both tests the asymptotic
distribution of the test statistic under the null hypothesis is
a version of the chi-bar-square distribution. Analogous tests
on a collection of Poisson means are also found to have asymp-

totic chi-bar-square distributions.

AMS 1970 Subject Classifications: Primary 62F05
Secondary 62E15

Keywords and phrases: starshaped orderings, multinomial

Poisson, likelihood ratio tests, chi-bar-square distri-

butions, maximum likelihood
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1. Introductlion and Summary.

Shaked (1979) derived the maximum likelihood estimate of
a vector of Poisson (normal) means subject to the restriction

that this vector 1s "starshaped." A vector 6 = (61,92,---,6 )

~

is said to be lower starshaped provided

6, +86 6, +6,+--- +8
el = —515—3 2 s 2 1 2 m k 2 0 wilth an analogous

restriction defining an upper starshaped vector. Starshaped
vectors arlse naturally in reliabllity theory as well as in cer-
tain situations where finite populations are amalgamated. We
refer the interested reader to Shaked (1979) for examples of
parameter sets which might be known or suspected to satisfy
such a restriction.

In Sectlon 2 we consider a sampling sltuation where the
result of each trial of our experiment must be a member of a
set of mutually excluslve events with corresponding probabili-
tles pl,p2,---,pk. The maximum likelihood estimate of the
vector, p = (pl,pz,---,pk), subject to the restriction that
it be lower starshaped, is derived (this sampling situation was
not considered by Shaked (1979)). This derivation 1is quite
direct and elegant in light of the complexity of the analysais
in Shaked (1979) and in light of the difficulties Involved in
the related problem of finding the maximum likelihood estimate
of P subjJect to the restriction Py 2p2 20 2p, (cf. Barlow,
Bartholomew, Bremner and Brunk (1972)). 1In fact, proofs that

various algorithms for the solution to the latter problem
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yleld the desired result are usually by induction.

In addition, asymptotic distribution theory for the like-
lihood ratio test of the homogeneity of pl,pz,‘--,pk against
the alternative that p 1s starshaped and for testing that‘g is
1s starshaped as a null hypothesis is also presented in Section 2.
Again the derivations are relatively direct. 1In both situa-
tions, the tall probabilities under the null hypothesis of this

asymptotic distribution turn out to be of the form
k-1
-2 “1fk-1 2
X1 () = zl,(e=o(,e-1) (5) Plx, 2t]

where xi denotes a standard chi-square variable with £
degrees of freedom. A somewhat similar distribution 1is en-
countered in the problem of testing homogeneity when the al-
ternative 1s restricted by Py2Py 2" 2p, (cf. Chacko
(1966)) and for testing Py 2p, 2-°° 2p, as a null hypothe-
sis (cf. Robertson (1978) and related results in Robertson
and Wegman (1978)). Such welghted chi-square distributions
are encountered in many order restricted inference problems
(cf. Barlow et al. (1972)). They were first encountered by
Bartholomew (1959) and are usually called chi-bar-square dis-

tributions ( §2) .

In Section 3 we assume independent samples from each of k

P pyp—

Poisson populations. The analysis in Section 2 together with
the well known fact that the joint distribution of independent

Poisson random variables conditioned on the value of the sum




multinomial, 1s used to derive maximum likellhood estimates
under the starshaped restriction on the parameter values.
This deriva%ion 1s substantlally easier than the original
derivation of these estimates by Shaked (1979). Asymptotic
distribution theory for llikelihood ratio statistics used for
testing homogenelty versus starshaped and for testing star-

shaped as a null hypothesis is also presented.

2. Multinomial Problem.

Suppose we have n 1independent trials of an experiment,
the outcome of which must be one of k mutually excluslve
events with corresponding probabilitles, P1sPystt 5Py
(Z:slpi =1)., Our first task is to find the maximum likelihood
estimate of the vector p under the restriction:

P, +p Py+p,+e e 4D
. 1*P2 o Pi*Pp k-1 . 1
(2.1) Hy ipy 2 —5— 2 2 k=1 2K

We define a one to one transformation of the parameter space

by introduclng new parameters 61,92,---,9k_1 where

)/(Z

P, Ja1 J) 11 =1,2,---,k-1

(2.2) o = (I, v

’3)°°',k‘1, pk = (l-ek_l)%

(91 = ug-ler pi = )ﬂk

=1 =1 J’
In terms of the ©0's the likellihood functicin can be written
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1 nZ,_.P np
(2.3) L(®) = L g 9=1%5 -6,) T, ose <1,

1i=1 1
where ﬁi is the relative frequency of the event having prob-

ability Py :1=1,2,-°,k. The restriction (2.1) becones

Hi 18, 2 1/(1+1) 11 =1,2,¢ ,k-1.
It 1s easy to find the maximum of the function ea(l-e)b
subject to 8 2 ¢ (0=6=1). This maximum 1s attained at

® = a/(a+b) V ¢, where V denotes the larger of the two num-
bers. It follows that the maximum likelihood estimates which

satisfy H1 are given by

(2.4) 8, = 61 v (1/141) :1=1,2,++,k-1
where 31 = (Z pJ)/(Z 1 J) and
- -1 2
(2.5) pi = nk =1 J 3y 1=1,2,+¢+,k-1
with 30 = 0 and Ek = 1-§k_1. Restating (2.5), we have

established the followlng theorem.

Theorem 2.1. The maximum likelihood estimates of PysPas* " ,P)

subject to the lower starshaped restriction are given by




— k-1, -
J=1

where ﬁi denotes the relative frequency of the event having

probability Dy -
Turning tb the testing problem, let
(2.6) H0 1Py =P, =+t =P, =1/k.

We let AO1 denote the likellhood ratio test statistic for

testing H, against Hl -HO (1.e., H;, but not HO) and

0 1

let T01 = =2 1n AOl' It 1s convenlent to write TOl in terms

of the 6's as follows:

[1n 'e'i -in(i/1+1)]

k-1 1
(2.7) Top = 221=1{(n23=1pd

+ nﬁi+l[1n(l-§i) -1n(1/i+l)]}.

Using Taylor's Theorem with a second degree remainder term, we

expand 1n 51 and 1n(1/1+41) about & and expand

i’

ln(l-Ei) and 1n(1/1+1) about 1—51. The linear terms drop

out and we obtain
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21 ~ Zi ~
-1 n =1p1 —_— -~ 2 n —lp' ~ 2
(2.8) T, = 2Zk - ®,-8,) +—I=1 13 1
01l 1=1 2“1 171 2B2 i 1+1
i
Pir1 g 5 24 21 (5 12
2y2 171 52 17141
i i
where a, is between 51 and 51; Bi is between éi and
1/(1+41); 7 1s between (l—ﬁi) and (l-éi) and Yy is

between (l-ai) and 1/(i+1). The law of large numbers implies

"

that, under H e1 converges to 1i/i+1.

O’
To obtalin some insight Into the asymptotic power of the

likelihood ratio test, we consider a sequence of alternatives

B satisfying H which converges to p where Py >0 for

1
all 1. We let ﬁn denote a random vector corresponding to

~.

j i.e., np. is multinomial (n,Rn). In our alternative

parameterization we have

i 1+1 1 i1+1
6, 4 = Jzipn’J/ngpn,J — 0, = %pj/ % Py
and
. 1 141
6,1 = ngﬁn’J/JElpn,J.

Somewhat surprisingly, it can be shown by conditioning on
i+l

jo1 pnj’ that E(en,i) = en,i'

Since nén is multinomial (n,En), it can be shown that
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/alp - p ) — MVN(0,}) where ] = (0;3) is defined by

1}
e

pi(l - Pi)’ i
O,
1]
-pipja 1#3'

(One way of showing this is to verify that the moments of

linear combinations of vn(p .) converge to the mo-

n,i - Pn,i

ments of linear combinations of an appropriate MVN vector, and
then employ Theorem B of Serfling (1980) and the Cramer-Wold

device.)

k k-1

Moreover, if we define the function g = (gl,--' ): RM—R

8x-1

by i+1

i
g, (x) = Ix,/ L x,,
1~ 1 J 1 J
Theorem 4.2 of Kepner (1979) implies that
Alg(B) -gp)] = vA(R -8 ) —2— MYN(0,DED’ )

where
k-1xk

D=(.§;(ij)
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Careful calculation reveals that DZID’' = 13
( 1
p1+1(7‘pJ)
1 1=y
i+1 )3 ?
0 s i1#53,

| S i b e S

(¥,,) 1s given by

so that, fortunately, we have asymptotlic independence among the

A 1
Jn en’i S.

"

If we recall that §© = 0 v T%T’ we can express the

n,i n,i

likelihood ratio test statistic as

K
(2.10) Tég) =

i=1

where
r( )3Hl/2
- a 1+1
Xn,i - Jﬁ(en,i_en,i) 1k ’
L N
- 3ql/2
= i (1+1)
6n,i Vﬁlen,i -i+1) 1k ’
(2.11) 3 ) R I
s ool E Pnyg o, Pnan| e’
n,i - 2 2 ’
’ j=1 Bn,i Yn,i 1k
L B,y Busen] [ )3 -
°n,1 " 351 2. 2 1%
i n,i vn,i

-1
2
L (X 4%8, 4) an,i‘(xn,1+6n,i)%kuir[xn L+ 4s0)
b ’




&>

Saa s

s A e APl

e L. o

Since Bn satisfies Hl for all n, 6n,1 2 0 for all
n,i. If & — 8 (finite) as n -— «, then
n,i i
i P i
en’i — 737> S© that an,i — 37 Recalling how an,i’
Bn,i’ Yn,i’ and vn,i were obtained, it then follows that
a £, 1 and b P, l as n — =,
n,1 n,i
b
In this situation, X —= Z,, where 2 is a n(0,1)
. n,i i i

random variable. Using Theorem 4.9 of Billingsley (1968), we

have

5
(Xn,1 ¥ 8 ,128,,17Pn,1) — (24 +84,1,1).

Then notling that the function h :R3 — R1 defined by

2
h(x,y,z) = x2y -x"z I[xso]

1s continuous, we may use Theorem 5.1 of Blllingsley t» say

)2 - (X_ ,+6 )2

n,1 "n,1 b I

n,i “[X 4+6, 450]

(X +5 a

n,i "n,i n,i

b 2 2
- (Zi+61) - (zi+61) I[Zi+6150]

- 2
= [(Zi+61) vol©.

In the event that & —+ ©, 1t can be shown that a is
n,1 n,i

bounded away from zero asymptotically while Xn 4 converges
s
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in distribution. Thus

2a ., - (X

Xn,1%*%,17 an 1

n,i+6n,i

We have thus established the following theorem.

Theorem 2.2. If Bn satisfying Hl converges to P(pi>0 for all i),

and 1f § (as defined in (2.11)) — 6, (possibly «) for

n,1i

1=31,+++,k=-1, then T is distributed asymptotically as

0,1

FFTRVSRETNN

k-1 5
(2.12) U= I [(zi+5i)v 0]°,
i=1

where 2 s,z

12’

1

!

|

k-] @are independent n(0,1) random variables. i
!

!

Of course the distribution of the random quantity in !

(2.12) 1s very intractable, except under the null distribution

H0 (61 =0, 1=1,---,k-1) when it becomes surprisingly nice. o
To elaborate, suppose I 1s a subset of {1,2,.--,k-1} and

let EI be the event EI = [Zi 20; 1 €I and Zi <0; 1 £1]. ‘
Then, for any real number u, j

2 .
P[U 2u,E;] = P[Z1eI 2y zu, 2, 20; 1 €I, Z, <0; 1 £I]

2u, 2, 20; 1 €I]-P(Z, <0; 1 £1]

2u |z, 20; 1 €1]-(1/2)%"}

L]
la~/
—
™~

P(xZ 2ul-(1/2)F1

« o<
bt »
e
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where m 1is the number of elements in I. The last step fol-

lows from Lemma B on page 128 of Barlow, Bartholomew, Bremner
and Brunk (1972). Partitioning the event [U2u] by inter-

secting it with all such events, E we obtain the expression

I,
for P[U2u] given in the following theorem.

Theorem 2.3. If H is true then

-1k k-1 2 _ 2
1im, o PLTyy 2t = Zi=o(.z)(1/2) Plx, 2t = %1 (®)

for all real ¢t (xo

The expression (2.12) 1s useful in getting a feeling for
the asymptotic power of the test compared to the usual unre-
stricted test for homogenelty of multinomial parameters. In
particular, under the conditions of Theorem 2.2, the asymptotic
distribution of -2 In A where A 1s the unrestricted 1likeli-
hood ratio (or of the usual Pearson chi-square goodness of fit
test) is the same as

k-1 5
U= I (Z,+8,)
1

where 2

12°°*s%y_q are independent n(0,1) random variables.

Under HO’ U’ 1is x2(k-1) and hence by looking at Theorem

2.3, we see that 1ts critical point must be substantlally
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larger than for testing HO against Hl’ However, as the

61'5 become larger, more nonzero terms enter into (2.12), so

that U and U’ become more nearly equivalent. The smaller

critical polnt of the restricted test implles that its power

must be larger eventually than that of the unrestricted test.
We now turn to the problem of testing H1 as a null hypoth-

esls. Since the unrestricted maximum likelihood estimate of

~

6i 1s equal to 61, it follows directly by writing the

likelihood ratio in terms of E and § and expanding 1n 51

(ln(l-ﬁi)) about éi ((1—51)) that our test statistic can he

written as T, = =2 1n A, = Zk J=1 ] + 1+1 n-(6,-6,)
1 1 1=1 a2 v2 i "
i 1

where oy is between 51 and 51 (and thus converges a.s. to

91) and vy is between 1-51 and lnéi (and thus converges

a.s. to 1—61).

By employing arguments similar to those used in Theorem
2.2, we are led to the following theorem. (Note that we do not

need to restrict By to Hl')

(as deflned

Theorem 2.4, 1If P, converges to p and I
~ >

in (2.11)) converges to 6i (2= are possible values) for

i=1,"-°,k-1, then Tl is distributed asymptotically as
k-1 5
V= I [(Z,+8,) AQ]
i=1

where Zl""’zk-l are independent n(0,1) random variables.

L . e
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i+1

1
We note that 1f 1 Y Ip, > (1+1)"1 T p., then 6 , -- o.
1 J 1 d n,1

In this case, the 1th term in (2.13) 1s zero and can be
ignored, leading to the following theorem.

Theorem 2.5. If p satisfles H then

1

im o P(T, 2t] = iﬁ(t)

where m 1s the number of subscripts, 1, such that

- (i+1)-121+1p

3 3=1 J; 1i=1,2,---,k=-1. 1In addition,

11
1 Zﬁ=lp

suppeHl 1im e Pp[le:t] = lm PHO[T1 >t]

—2
Y1 ()

where PH [Tl 2t] 1s the probability of the event [Tl 2 t]

computed under HO-
We note that Theorems 2.2 and 2.4 imply that the 1likeli-

hood ratio tests considered here are consistent in the sense

that for p lying in the region defined by the alternative

hypothesis, the power function must converge to one.




Poisson Problem.

Suppose we have a random sample of size n from each of
k Poisson populations having means 11,12,---,Ak. Shaked
(1979) found the maximum likelihood estimate of

A= (A *3A, ) subject to the restriction H, requiring

1,12’..
that A i1s lower starshaped:

AL+A
(3.1) : 12 2 > ...

This result can be found 1n a straightforward fashion using the
results in Section 2 together with the fact that the conditional
distribution of independent Poisson variables, given their sum,

1s multinomially distributed.

We first write the likelihood function in terms
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of the variables ¢1,¢2,---,¢k where

(3.2) ¢y = A /Z Ai, 1=1,2,--+,k-1 and

-1
(Ai = 80,5 1i=1,2,--°,k-1, lk = ¢k-Z:=1¢i¢k). The restric-

tion that A is starshaped is equivalent to requliring that

g 1s starshaped, or

g,te -1
. 172, ... -1 -1
(3.3) Hi 19 2 —5— 2 2 (k-1) Z§=1¢1 = k

and these restrictions do not involve The likelihood func-

Py
tion 1s proportional to

-1 nx - -ng, nZi EH
(3.4) [( i=1¢1 ) ( Zk ¢1 ] [ ” ]

where ;i is the mean of the sample from the ith population;

i1i=1,2,--*,k. Because H1 does not ;estrict B s the two
factors in brackets may be maximized independently. Using the
results from Section 2 on the first factor and an easy analysis
involving the derivative of the second factor, we obtaln the

restricted maximum likelihood estimates as follows:

(3.5) By = By V(L/141) 1 1=1,2,000 k-1

zk

where = /Zk 1 J’ and P = =1 xJ = 8. (Note that

,31,82,~--,8k are the unrestricted maximum likellhood estimates
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of ¢l,¢2,--',¢k.) Using the I1nvariance property of maximum

likelihood estimation, we have the following theorem.

Theorem 3.1 (Shaked). The maximum likelihood estimates of

11,12,-~-,lk subject to the restriction Hl are given by

X

X

by - i 1 . k Py L] ——3 . &

X, = [ZF — v 1+1] Zj=1x3 s 1=1,2,:-+,k-1
J=1"J

R = (Bm) 2 mila v o))

The likelihood ratio statistic for testing HO:

M= =y

in terms of the g's, as follows:

against the alternative Hl—HO can be writtcen

n -
; (1/x) 1=t1
(3'7) AO]. = — —
Ilk-l -nXy 1 Zk-l ~ \ nX,
1=1 e %
Zk —
If we let 801 = -2 1n AOl and let Y =n 1=1x1’ then given

that Y =y, the Joint conditional distribution of

yalsya2,"',y(l-2§;iad) i1s multinomlal with parameters y und

k
A1/2'}1(.1*1’*2/21=17‘1""’1 /Ztglli’
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If we let ) satisfying H, converge to 2 (Xi >0

1
for all 1) such that

' /2
(3.8) 8 = Jﬁ( L/ LA - )[(1+1) ] — &, (possibly )

ik

and let Xn,i

means which occur in S

denote the corresponding lndependent sample

(n) _ (n)
01 = -2 1n Noi» then using the Domi-

nated Convergence Theorem:

(n) (n)
1im P(Sy,° 2t) = 1im E®(8,," =t |Y ))

n-e n-

E[1im P(ség) ztlYn)] = E[P(U 2t)]

1] -t

P[U> t]

where U 1s distributed as in Theorem 2.2. Thus S is

01
distributed asymptotically exactly as T01 in Section 2 (with
'
pn,i replaced by An,i in the bn,i s). In particular, if

H0 is true, the asymptotic tall probablilities are glven as

in Theorem 2.3.




Theorem 3.2. If H is true, then

0

_ =2
1im P[SOl 2t] = xk_l(t).

rn=e®

Let us now consider the problem of testing Hl

hypothesls. The likelihood ratio A can be written

o E)een 5 )™

- &
(3.9) 1 . i ii ” i X
- n - n
MY (12 - K
(d;l % )(1 Zl1(=1 ¢1)
since ¢k = ¢k.

If we let S1 = -2 1ln Al’ then the same type of reasoning

used 1n the previous argument can be applied to show that

(3.10) 1im P(S; =2 t) = 1lim E(P(S, 2t |Y))
1 1
n.-.o: n_.m
= E[1im P(5, =t )]
n -

= P(V 2¢t]

where V 1s defined in Theorem 2.4 and 6n 1 1s deflned
3

in (3.8). It follows from (3.10) that if A satisfles
then the ith term of V goes to zero 1f

as a null

a8

H

l’
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1 1 _qlitl
1 Z A, > (1i+1) A,
j=l ’j J:l 'j

which leads to the following theorem.

Theorem 3.3. If A satisfiles Hl’ then

1im PA[Slzt] = )_(5‘(1:)

n-e

where m 1s the number of distinct 1 such that

1 141
171 oL = ety Ay
J=1

Moreover
-2
(3.11) sup 1im P,[S. =>t] =P, [S, 2t] = x° .(t)
A€, n A-C1 Hy "1 k-1

where PH (-) 1s computed under the assumption that
0

H

0

is true.
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Note that Theorem 3.3 enables us to construct likelihood
ratio tests of a particular size asymptotically when testing
H versus all other alternatives. Of course (3.8) and (3.10)

1
assure us that our tests are asymptotically consistent in the

sense that 1f i is in the region of the alternate hypothesis,
the probabllity of rejecting the null hypothesls converges to

one as n — %,

It should be noted that even though Shaked (1979) allows

the more general starshaped ordering

IR . W, R
AL =2 w, A W, = LW, A, /lw, = **° w.A,/Lw, 20,
I B M e RS M S b R

th population

his restriction that the sample size from the 1
be proportional to ws effectlively reduces the problem to the

one considered earlier.

4. Concluding Remarks.

F. T. Wright called our attention to the work of Shaked
(1979) after we had carried through much of the research in
this paper. Actually our original analysls neglected the

nonnegativity restriction and we termed the restriction

"decreasing on the average." More specifically we should have
termed it "decreasing on the average from the left" since ;
6, +6 6, +6, +8 8, +6,+86 f
g, > 1 2, 1 23 1s not equivalent to 1 2 3 :
1 2 3 3
6, +80

2 _l7?_§ 2 63 (1.e., 1ncreasing on the average from the right).
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It is clear that the restrictions 1ncreasing on the average

from the right, increasing on the average from the left and
decreasing on the average from the right can be handled by
analysis simllar to that 1n Sections 2 and 3.

The phrase "decreasing on the average" also calls to mind

the restriction

7l et e s (eenyl 5F

Hy 3=1% y=1+1%

1=1,2,",k-1.

-1l -
An equivalent way of stating H, is 1 le=19J > k 12§=16J ;

1=1,2,-+-,k-1. We note that the order restrictions specified

P are less restrictlve than those imposed by Hl which

in turn are less restrictive than 61 = ei+1, 1=1,---,k-1.

in H

In the multinomial setting, maximum likelilhood estimates of p
subject to H2 and distribution theory for testing HO vVs.

H2-HO and for testing H2 as a null hypothesis can be found
in Robertson and Wright (1980). Again, the asymptotic distri-

bution 1s a chi-bar-square.

The 10%, 5% and 1% cutoff values of §2(-) for

k=2,3,""°,15 are given in Table 1.
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Table 1.

_ k-1 k- k-1
Critical values for X _ (t) = I kll (%) P[Xi z2t]

t"‘O
\
k

.10 .05 .01
'; 3 2.95 4,23 7.28
it 4,01 5.44 8.77
N 5 4.95 6.50 10.02
2 6 5.84 7.48 11.18
{ 7 6.67 8.41 12.26
8 7.48 9.29 13.31
E 9 8.26 10.15 14.29 |
K 10 9,02 10.99 15.29 =
1 11 9.76 11.79 16.21
' 12 10.49 12.59 17.12
J 13 11.22 13.38 18.01
\ 14 11.93 14.15 18.91
o 15 12.63 14.91 19.78
1
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